CPES Chapitre V

Structures algébriques

année scolaire 2020-2021

V-1 Lois de composition

V-1.1 Définitions de lois

Exercice V-1

On définit sur $\mathbb R$ l'opérateur :

$$\forall (x, y) \in \mathbb{R}^2, \ x \star y = \ln(e^x + e^y).$$

- 1. Justifier que l'opérateur \star est une loi de composition interne sur \mathbb{R} .
- 2. Cette loi est-elle commutative?
- 3. Cette loi possède-t-elle un élément neutre?
- 4. Quels sont les éléments réguliers?

Exercice V-2

Soit E un ensemble fini muni d'une loi de composition interne \ast associative.

Montrer qu'il existe un élément α de E tel que

$$\alpha * \alpha = \alpha$$
.

Indication: on pourra considérer un élément $a \in E$ et les éléments de la forme a^{2^n} pour $n \in \mathbb{N}$, en posant $a^k = a * a * \cdots * a$ (k fois).

Exercice V-3 _

On munit \mathbb{R} de la loi de composition *:

$$\forall (x,y) \in \mathbb{R}^2, \ x * y = xy + (x^2 - 1)(y^2 - 1).$$

Montrer que * est une loi interne sur \mathbb{R} qui est commutative, non associative et possédant 1 pour élément neutre.

Exercice V-4 _

On munit \mathbb{R}^+ de la loi de composition *:

$$\forall (x,y) \in (\mathbb{R}^+)^2, \ x * y = \sqrt{x^2 + y^2}.$$

Montrer que * est une loi interne associative, commutative, admettant 0 pour élément neutre et qu'aucun élément x autre que 0 ne possède de symétrique.

Que se passe-t-il si l'on considère la loi définie sur \mathbb{R} et non \mathbb{R}^+ ?

V-1.2 Éléments particuliers

Exercice V-5

On définit sur E = [0; 1] la loi \star :

$$\forall (x,y) \in E^2, \ x \star y = x + y - xy.$$

1. Montrer que ★ est une loi de composition interne associative et commutative.

Indication: on pourra regarder $1 - (x \star y)$.

- 2. Déterminer l'élément neutre pour cette loi.
- 3. Quels sont les éléments inversibles?
- 4. Quels sont les éléments réguliers?

Exercice V-6

On considère un ensemble E et on pose X l'ensemble des applications de E dans E, que l'on munit de la loi de composition des applications.

Montrer qu'un élément f de X est régulier si et seulement si f est bijective.

Exercice V-7

Soit E un ensemble muni d'une loi interne \top associative, d'élément neutre e, et soit $a \in E$.

Montrer que a est inversible si et seulement si

$$\begin{array}{cccc} f & : & E & \longrightarrow & E \\ & x & \longmapsto & a \top x \end{array}$$

est bijective.

Exercice V-8

Soit E un ensemble muni d'une loi de composition interne associative. Un élément x de E est dit idempotent si $x \top x = x$.

- 1. Montrer que si x et y commutent et sont idempotents, alors $x \top y$ aussi.
- 2. Montrer que si x est idempotent, alors son inverse x' l'est aussi.

V-1.3 Morphismes

Exercice V-9

On munit \mathbb{R} de la loi * définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ x * y = \sqrt[3]{x^3 + y^3}$$

Montrer que l'application

$$\varphi : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x^3$$

est un isomorphisme de $(\mathbb{R}, *)$ vers $(\mathbb{R}, +)$.

18 Exercices

V-2 Groupes

Exercice V-10

Sur \mathbb{R} on définit la loi * par a*b=a+b+ab.

- Montrer que * est une loi interne, associative, commutative.
- 2. Montrer que la loi * possède un élément neutre que l'on déterminera.
- 3. Montrer que $(\mathbb{R}\setminus\{-1\},*)$ est un groupe abélien.
- 4. Résoudre l'équation 2*3*x*5=5*3.

Consigne: on traitera cette question en utilisant les questions ci-dessus et non en revenant à la définition de la loi * et en effectuant les calculs avec les + et \times habituels.

Exercice V-11

Montrer que l'ensemble des bijection d'un ensemble X dans lui-même, muni de la loi de composition des applications, est un groupe.

Exercice V-12

Déterminer le groupe des isométries ³ du carré. Quelle est la loi considérée ? Quel est son ordre ? Est-il abélien ?

Exercice V-13

L'ensemble des bijections dérivables de $\mathbb R$ dans $\mathbb R$ pour les différentes lois constituent-ils un groupe? Quelle est la loi considérée?

Exercice V-14

Soit (G, \top) un groupe d'élément neutre e. Montrer que si l'on a $a' \top b \top a = b'$ et $b' \top a \top b = a'$, alors $a^4 = b^4 = e$ (où $a^4 = a \top a \top a \top a$).

Indication: on pourra commencer par calculer $b \top a \top b$ et $a \top b \top a$.

Exercice V-15 _

Soit (G,.) un groupe, soient a et b deux éléments de G, et soit n un entier naturel tels que

$$(ab)^n = e.$$

Montrer qu'alors $(ba)^n = e$.

Exercice V-16

Soit G un ensemble non vide muni d'une loi de composition interne (notée multiplicativement) associative, qui possède un élément neutre à droite e, c'est à dire que l'on a

$$\forall g \in G, \ ge = g$$

et telle que tout élément g de G admette un inverse à droite g', c'est à dire :

$$\forall g \in G, \exists g' \in G, \ gg' = e.$$

Montrer que (G, .) est un groupe.

Indication: on pourra introduire g'', le symétrique à droite de g' pour montrer que le symétrique à droite est aussi symétrique à gauche, puis montrer que l'élément neutre à droite est aussi élément neutre à gauche.

Exercice V-17

Soit (G, \star) un groupe (d'élément neutre e) tel que pour tout x dans G, $x^2 = e$. Montrer que G est commutatif.

Exercice V-18

On considère l'ensemble des fonctions homographiques $x\mapsto \frac{ax+b}{cx+d}$, (avec $ad-bc\neq 0$) définies sur la droite projective (c'est à dire la droite réelle complétée 4 par un élément ∞ tel que $\frac{1}{0}=\infty$ et $\frac{1}{\infty}=0$).

Montrer que ces fonctions forment un groupe pour la composition des applications.

V-2.1 Sous-groupes

Exercice V-19

Soient A et B deux sous-groupes d'un groupe (G, .). On note AB l'ensemble des produits d'un élément

de A par un élément de B.

Montrer que AB est un sous-groupe si et seulement si AB = BA.

Exercice V-20 _

Soit (G, \cdot) un groupe noté multiplicativement et soit A un sous-groupe de G. On appelle normalisateur de A le sous-ensemble noté N(A) défini par :

$$\left\{ x \in G \middle/ \forall a \in A, \ \exists (a_d, a_g) \in A^2, \left\{ \begin{array}{l} a \cdot x = x \cdot a_d \\ x \cdot a = a_g \cdot x \end{array} \right\}.$$

Montrer que N(A) est un sous-groupe de G.

Exercice V-21

Soit S un sous-groupe d'un groupe G noté multiplicativement et soit $a \in G$. Montrer que $a^{-1}Sa$ est un sous-groupe de G. On l'appelle sous-groupe $conjugu\acute{e}$ de S.

Remarque. Ce résultat s'étend au cas où S n'est pas un sous-groupe mais juste un sous-ensemble non vide de G. \circ

Exercice V-22

Soit $\omega \in \mathbb{C} \setminus \mathbb{Z}$ et $H = \{a + \omega b / (a; b) \in \mathbb{Z}^2\}$.

Montrer que H est un sous-groupe de $(\mathbb{C}, +)$.

Remarque. Si l'on pose $\omega = \sqrt{d} \in \mathbb{R} \setminus \mathbb{Z}$, on définit un groupe noté $\mathbb{Z}[\sqrt{d}]$ qui est appelé une *extension* du groupe $(\mathbb{Z}, +)$.

Exercice V-23

Soit $a \in \mathbb{C}^*$ et $H = \{a^n / n \in \mathbb{Z}\}.$

Montrer que H est un sous-groupe de (\mathbb{C}^*, \times) .

Exercice V-24

Soit E un ensemble et a un élément de E. On note $\mathfrak{S}(E)$ l'ensemble des bijections de E. Montrer que $H=\{f\in\mathfrak{S}(E)/f(a)=a\}$ est un sous-groupe de $(\mathfrak{S}(E),\circ)$.

Exercice V-25

Soient H et K deux sous-groupes d'un groupe (G,\star) tels que $H\cup K$ soit aussi un sous-groupe de G. Montrer que $H\subset K$ ou $K\subset H$.

Indication: on pourra raisonner par l'absurde.

^{3.} On appelle groupe des isométries d'un polygone l'ensemble des transformations géométriques laissant globalement invariant ce polygone. Par exemple, si les sommets du polygone sont A_1 , A_2 ... A_n , alors chaque sommet A_i , après la transformation, devient l'un des sommets A_i .

^{4.} Ne pas confondre ∞ avec $+\infty$ et $-\infty$. C'est le même genre d'élément que dans le compactifié d'Alexandrov.

Exercice V-26

Soit $G = \mathbb{R}^* \times \mathbb{R}$, et \star la loi de composition définie sur G par

$$(x_1; y_1) \star (x_2; y_2) = (x_1x_2; x_1y_2 + y_1).$$

- 1. Montrer que (G, \star) est un groupe non commutatif.
- 2. Montrer que $\mathbb{R}_+^* \times \mathbb{R}$ est un sous-groupe de (G, \star) .

V-2.2 Morphismes de groupes

Exercice V-27

Soit (G,.) un groupe multiplicatif et g un élément de G. On définit l'application φ_g de G dans G par :

$$\begin{array}{cccc} \varphi_g & : & G & \longrightarrow & G \\ & h & \longmapsto & ghg^{-1}. \end{array}$$

- 1. Montrer que φ_g est un automorphisme.
- 2. Si le groupe G est commutatif, que vaut φ_q ?

Exercice V-28 _

Pour tout couple (a, b) de \mathbb{R}^2 , on pose

$$M_{a,b} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

On définit l'ensemble $S = \{M_{a,b}/(a,b) \in \mathbb{R}^2 \setminus (0,0)\}$ et l'application :

$$f: \mathcal{S} \longrightarrow \mathbb{R}$$
 $M_{a,b} \longmapsto a^2 + b^2$.

- 1. Montrer que S est un groupe pour la loi usuelle de multiplication des matrices carrées.
- 2. Montrer que f est un morphisme du groupe (S, \times) dans le groupe multiplicatif (\mathbb{R}^*, \times) .

Exercice V-29

Montrer que la fonction exponentielle est un morphisme du groupe $(\mathbb{R}, +)$ dans le groupe (\mathbb{R}^*, \times) .

Quelle est son image? Quel est son noyau?

Exercice V-30

L'application f définie sur \mathbb{C}^* par $f(z) = \frac{z}{|z|}$ constitue-t-elle un morphisme de groupe? Dans l'affirmative, on précisera quels groupes et on donnera son image et son noyau?

Exercice V-31

Soient (G, \top) et (G', \bot) deux groupes et soit $f: G \to G'$ un morphisme de groupes.

- 1. Montrer que pour tout sous-groupes H de G, f(H) est un sous-groupe de (G', \bot) .
- 2. Montrer que pour tout sous-groupes H' de G', $f^{-1}(H')$ est un sous-groupe de (G, \top) .

V-3 Anneaux

V-3.1 Structure d'anneaux

Exercice V-32

Montrer que l'ensemble \mathbb{D} des nombres décimaux est un sous-anneau de l'anneau $(\mathbb{Q}, +, \times)$.

Exercice V-33 _

Étant donné un anneau $(A, +, \times)$, on suppose que :

$$\begin{array}{cccc} f : & A & \longrightarrow & A \\ & x & \longmapsto & x^2 \end{array}$$

est un morphisme surjectif.

Montrer que A est commutatif.

Indication: en posant $x = u^2$ et $y = v^2$, on pourra considérer f(uv) et f(u + v).

V-3.2 Éléments inversibles et réguliers

Exercice V-34

Soit d un entier qui n'est pas un carré parfait. On pose $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d}/(a; b) \in \mathbb{Z}^2\}.$

- Montrer que $\mathbb{Z}[\sqrt{d}]$ est un sous anneau de $(\mathbb{R}, +, \times)$.
- Montrer que \mathbb{Z} est un sous-anneau de $\mathbb{Z}[\sqrt{d}]$.
- Quels sont les éléments inversibles? Quel est leur inverse?
- Que se passe-t-il si d est un carré parfait?

Exercice V-35 ___

On note $\mathbb{Z}[i]$ l'ensemble des entiers de Gauss, constitué des éléments de la forme

$$\mathbb{Z}[i] = \{a + ib/(a; b) \in \mathbb{Z}^2\}.$$

- 1. Montrer que $\mathbb{Z}[i]$ est un anneau commutatif pour l'addition et la multiplication des complexes.
- 2. Déterminer les éléments inversibles de $\mathbb{Z}[i]$.

Exercice V-36

Soient A un anneau et $a \in A$. On suppose qu'il existe un élément et un seul b dans A tel que b ab = 1.

Montrer que a est régulier à gauche, puis qu'il est inversible et que $a^{-1}=b$.

Indication : utiliser $ax = ay \Rightarrow a(x - y + b) = 1_A$, et l'unicité de b.

Exercice V-37.

Soient A un anneau et a et b deux éléments de A tels que

$$ab + ba = 1_A$$
 et $a^2b + ba^2 = a$.

- 1. Montrer que $a^2b = ba^2$ et que 2aba = a.

 Indication: utiliser après l'avoir montré, le fait que $a^2b + ba^2 = a(ab + ba)$ entraîne $ba^2 = aba$.
- 2. Montrer que a est inversible et que $a^{-1} = 2b$. Indication: montrer et utiliser $(ab)^2 = (1 ba)^2$.

^{5.} cela ne signifie pas a priori que b est le symétrique de a, car ce n'est que la multiplication à droite qui donne 1_A .

20 Exercices

Exercice V-38

Soient a et b deux éléments d'un anneau $(A, +, \times)$ tels que ab soit inversible et b n'est pas un diviseur de 0. Montrer que a et b sont inversibles.

V-3.3 Diviseurs de zéro et éléments nilpotents

Exercice V-39

Soit A un anneau et $a \in A$ un élément nilpotent. Montrer que 1_A-a est inversible et calculer son inverse.

Exercice V-40

Soit A un anneau, et soient a et b deux éléments de A tels que ab soit nilpotent. Montrer que ba l'est aussi.

Exercice V-41

Montrer qu'un anneau $(A, +, \times)$ n'a pas de diviseurs de zéro si et seulement si tous ses éléments non nuls sont réguliers.

Exercice V-42

Soient x et y deux éléments d'un anneau $(A, +, \times)$.

- 1. Montrer que si x est nilpotent et que x et y commutent, alors xy est nilpotent.
- 2. Montrer que si x et y sont nilpotents et commutent, alors x + y est nilpotent.
- 3. Montrer que si xy est nilpotent, alors yx l'est aussi.
- 4. Montrer que si x est nilpotent, alors 1-x est inversible. Déterminer alors $(1-x)^{-1}$.

V-4 Corps

Exercice V-43 _

On définit sur $\mathbb R$ les deux lois :

$$\forall (a;b) \in \mathbb{R}^2, \ a \top b = a+b-1$$
$$\forall (a;b) \in \mathbb{R}^2, \ a \bot b = ab-a-b+2.$$

Montrer que (\mathbb{R}, \top, \bot) est un corps. On précisera le symétrique d'un réel x (s'il existe) pour chacune des deux lois.

Exercice V-44

Soient \mathbb{K} et \mathbb{L} deux corps et f un morphisme de corps de \mathbb{K} dans \mathbb{L} . Montrer que f est injectif.

Exercice V-45

Soit $a \in \mathbb{Q}_+^*$ tel que $\sqrt{a} \notin \mathbb{Q}$. On pose

$$\mathbb{Q}(\sqrt{a}) = \{x + y\sqrt{a}/(x; y) \in \mathbb{Q}^2\}.$$

- 1. Montrer que, pour les addition et multiplication usuelles sur $\mathbb R$ nous avons $\mathbb Q(\sqrt{a})$ qui est un corps.
- 2. Montrer que \mathbb{Q}^2 , muni des opérations usuelles terme à terme, et $\mathbb{Q}(\sqrt{a})$ ne sont pas isomorphes.

Exercice V-46

Soit A un anneau commutatif fini. Montrer que A est un corps si et seulement si il ne possède pas de diviseurs de zéro.

Exercice V-47

Montrer que $(\mathbb{Q}, +, \times)$ ne possède pas de sous-corps propres. Autrement dit, montrer que tout sous-corps de $(\mathbb{Q}, +, \times)$ est égal à \mathbb{Q} lui-même.

V-5 Espaces vectoriels

Exercice V-48 _

Soit E un \mathbb{R} -espace vectoriel. On munit le produit cartésien $E \times E$ de l'addition : (x,y)+(x',y')=(x+x',y+y') et de la multiplication externe par un nombre complexe : (a+ib).(x,y)=(a.x-b.y,a.y+b.x).

Montrer que $E \times E$ est alors un \mathbb{C} -espace vectoriel.

Exercice V-49

Les parties suivantes sont-elles des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?

- 1. $\{(u_n)_n \in \mathbb{R}^{\mathbb{N}}/(u_n)_n \text{ born\'ee}\}$.
- 2. $\{(u_n)_n \in \mathbb{R}^{\mathbb{N}}/(u_n)_n \text{ monotone}\}.$
- 3. $\{(u_n)_n \in \mathbb{R}^{\mathbb{N}}/(u_n)_n \text{ convergente}\}.$
- 4. $\{(u_n)_n \in \mathbb{R}^{\mathbb{N}}/(u_n)_n \text{ arithmétique}\}$.
- 5. $\{(u_n)_n \in \mathbb{R}^{\mathbb{N}}/(u_n)_n \text{ géométrique}\}.$

Exercice V-50 _

Les parties suivantes sont-elles des sous-espaces vectoriels de \mathbb{R}^2 ?

- 1. $\{(x;y) \in \mathbb{R}^2 / x \leq y\}$.
- 2. $\{(x;y) \in \mathbb{R}^2 / xy = 0\}.$
- 3. $\{(x;y) \in \mathbb{R}^2 / x = y\}$.
- 4. $\{(x;y) \in \mathbb{R}^2 / x + y = 1\}.$

Exercice V-51

Les sous-ensembles de $\mathcal{F}(\mathbb{R},\mathbb{R})$ suivants sont-ils des sous-espaces vectoriels ?

- 1. $\{f: \mathbb{R} \mapsto \mathbb{R}/f \text{ monotone}\}.$
- 2. $\{f: \mathbb{R} \mapsto \mathbb{R}/f \text{ s'annule}\}.$
- 3. $\{f: \mathbb{R} \mapsto \mathbb{R}/f \text{ s'annule en } 0\}.$
- 4. $\{f: \mathbb{R} \mapsto \mathbb{R}/f \text{ impaire}\}.$